Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012163, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713713

RESUMO

BACKGROUND: Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96aregulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii. CONCLUSIONS/SIGNIFICANCE: All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.

2.
Anticancer Drugs ; 35(6): 584-596, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518088

RESUMO

Human epidermal growth factor receptor 2-tyrosine kinase inhibitors (HER2-TKIs) have been extensively utilized for treating HER2-positive metastatic breast cancer (MBC), with numerous clinical trial reports available. We aim to systematically perform a comprehensive clinical evaluation on HER2-TKIs, provide a reference for the clinical rational use of drugs, and serve for the decision-making of the national drug policy. We performed comprehensive clinical evaluation in six dimensions including safety, effectiveness, economy, suitability, accessibility, and innovation through meta-analysis, literature review, drug administration websites, and other relevant medication data to analyze HER2-TKIs in treating HER2-positive MBC. For safety, the risk of ≥ grade 3 adverse events among pyrotinib, lapatinib, and neratinib is not significantly different. Furthermore, pyrotinib and neratinib were found to be higher in the risk of ≥ grade 3 diarrhea than lapatinib, however the risk could be reversed and prevented with loperamide. Regarding effectiveness and economy, pyrotinib was confirmed to have the best efficacy and cost-utility value, neratinib the second, and lapatinib the third. As regards innovation and suitability, pyrotinib showed better than other HER2-TKIs. In addition, pyrotinib received a higher recommendation than other HER2-TKIs in patients with HER2-positive MBC. The accessibility of pyrotinib was found to be the best with better urban, rural, and national affordability and lower annual treatment costs. Pyrotinib is more valuable in clinics with better safety, effectiveness, economy, suitability, accessibility, and innovation in HER2-positive MBC. This study could provide references for the clinical application of HER2-TKIs in treating HER2-positive MBC.


Assuntos
Neoplasias da Mama , Inibidores de Proteínas Quinases , Receptor ErbB-2 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Feminino , Inibidores de Proteínas Quinases/uso terapêutico , Lapatinib/uso terapêutico , Antineoplásicos/uso terapêutico , Quinolinas/uso terapêutico , Quinolinas/efeitos adversos , Acrilamidas , Aminoquinolinas
3.
J Biol Chem ; 300(3): 105721, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311175

RESUMO

Histone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf. The transcription factor TDRD3 is the downstream effector of H3Y99sulf-H4R3me2a axis in HCC. It reads and co-localizes with the H3Y99sulf-H4R3me2a dual mark in the promoter regions of HIF1A and PDK1 to regulate gene transcription. Depletion of SULT1B1 can effectively reduce the occurrence of H3Y99sulf-H4R3me2a-TDRD3 axis in gene promoter regions and lead to downregulation of targeted gene transcription. Hypoxia-inducible factor 1-alpha and PDK1 are master regulators for hypoxic responses and cancer metabolism. Disruption of the H3Y99sulf-H4R3me2a-TDRD3 axis can inhibit the expression and functions of hypoxia-inducible factor 1-alpha and PDK1, resulting in suppressed proliferation, tumor growth, and survival of HCC cells suffering hypoxia stress. The present study extends the regulatory and functional mechanisms of H3Y99sulf and improves our understanding of its role in cancer biology.


Assuntos
Carcinoma Hepatocelular , Histonas , Neoplasias Hepáticas , Tirosina , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Tirosina/metabolismo
4.
Sci Rep ; 14(1): 667, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182739

RESUMO

Endovascular therapy (EVT) is effective in the treatment of large vascular occlusive stroke. However, many factors are associated with the outcomes of acute ischemic stroke (AIS) after EVT. This study aimed to identify the main factors related to the prognosis of AIS patients after EVT. We analyzed the clinical data of AIS patients in the neurology department of our medical center from June 2017 to August 2021 following treatment with EVT. The data included the patients' blood pressure upon admission, blood glucose concentration, National Institutes of Health Stroke Scale (NIHSS) score, 90-day modified Rankin scale (mRs) score follow-up data, and time from LKN to the successful groin puncture (GP). A good outcome was defined as a 90-day mRs score of 0-2, and a poor outcome was defined as a 90-day mRs score of 3-6. A total of 144 patients were included in the study. Admission, smoking, and LKN-to-GP time, NIHSS score of 6-12 was found to be relevant to the prognosis. The results of multivariate analysis showed that prognosis was significantly influenced by baseline NIHSS (odds ratio = 3.02; 95% confidence interval, 2.878-4.252; P = 0.001), LKN-to-GP time (odds ratio = 2.17; 95% confidence interval, 1.341-2.625; P = 0.003), and time stratification (6-12 h) (odds ratio = 4.22; 95% confidence interval, 2.519-5.561; P = 0.001). Our study indicated that smoking, baseline NIHSS score, and LKN-to-GP time were the risk factors for a poor outcome in stroke patients following an EVT. Quitting smoking and shortening LKN time to GP should improve the outcome of AIS after EVT.


Assuntos
Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Estados Unidos , Humanos , Prognóstico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Punções , Procedimentos Endovasculares/efeitos adversos
5.
Environ Sci Pollut Res Int ; 30(52): 113105-113117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848780

RESUMO

In the context of global high temperature, the harm of greenhouse gases (GHG) emissions caused by frequent forest fires to the environment cannot be ignored. Existing research only calculates the GHG generated by the burning of forest vegetation, ignoring the GHG generated by the fire-driven social rescue activities. Taking the forest fire in Beibei District, Chongqing City, China, as an example, this paper studies and establishes the GHG emission accounting method for the whole process of forest fire from ignition to fire extinguishing through three processes: vegetation burning, rescue transportation, and on-site fire extinguishing. It covers three GHG calculation types: biomass burning, traffic activity level comprehensive energy consumption, and machine energy consumption. Among them, the CO2 produced by the burning of coniferous forest, the support transportation of rescue teams in Yunnan province, and the motorcycle transportation at the fire extinguishing site accounted for a relatively high proportion in the corresponding processes, reaching 12,761.445 t, 118.750 t, and 1056.980 t, respectively. Finally, through data analysis, suggestions on GHG emission reduction related to forest tree regulation and optimization of rescue and fire extinguishing management are put forward, which provides a direction for future research on carbon reduction in the whole process of forest fire events.


Assuntos
Incêndios , Gases de Efeito Estufa , Incêndios Florestais , China , Florestas , Árvores
6.
Cell Prolif ; 56(10): e13476, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37042047

RESUMO

Senile osteoporosis is characterized by age-related bone loss and bone microarchitecture deterioration. However, little is known to date about the mechanism that maintains bone homeostasis during aging. In this study, we identify adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1) as a critical factor regulating the senescence and lineage commitment of mesenchymal stem cells (MSCs). A phospho-mutant mouse model shows that constitutive AMPKα1 activation prevents age-related bone loss and promoted MSC osteogenic commitment with increased bone-derived insulin-like growth factor 1 (IGF-1) secretion. Mechanistically, upregulation of IGF-1 signalling by AMPKα1 depends on cAMP-response element binding protein (CREB)-mediated transcriptional regulation. Furthermore, the essential role of the AMPKα1/IGF-1/CREB axis in promoting aged MSC osteogenic potential is confirmed using three-dimensional (3D) culture systems. Taken together, these results can provide mechanistic insight into the protective effect of AMPKα1 against skeletal aging by promoting bone-derived IGF-1 secretion.


Assuntos
Fator de Crescimento Insulin-Like I , Osteoporose , Camundongos , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Osso e Ossos/metabolismo , Envelhecimento/metabolismo , Osteogênese , Osteoporose/prevenção & controle
7.
Front Oncol ; 12: 836058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359351

RESUMO

Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1) that involves in the ß-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of physiological and pathological conditions. ACC1 is the major member of ACCs in mammalian, mountains of documents record the roles of ACC1 in various diseases, such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-translational modifications, resulting in alternated biological processes in mammalian cells. In the review, we summarize our understandings of ACCs, including their structural features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a promising target for diseases treatment, so that the specific inhibitors of ACC1 for diseases treatment are also discussed.

8.
Front Immunol ; 13: 773341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185877

RESUMO

The herpes virus entry mediator (HVEM) is an immune checkpoint molecule regulating immune response, but its role in tissue repair remains unclear. Here, we reported that HVEM deficiency aggravated hepatobiliary damage and compromised liver repair after 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced injury. A similar phenotype was observed in B and T lymphocyte attenuator (BTLA)-deficient mice. These were correlated with impairment of neutrophil accumulation in the liver after injury. The hepatic neutrophil accumulation was regulated by microbial-derived secondary bile acids. HVEM-deficient mice had reduced ability to deconjugate bile acids during DDC-feeding, suggesting a gut microbiota defect. Consistently, both HVEM and BTLA deficiency had dysregulated intestinal IgA responses targeting the gut microbes. These results suggest that the HVEM-BTLA signaling may restrain liver injury by regulating the gut microbiota.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/imunologia , Microbioma Gastrointestinal/imunologia , Receptores Imunológicos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/toxicidade , Receptores Imunológicos/deficiência , Membro 14 de Receptores do Fator de Necrose Tumoral/deficiência
9.
Adv Mater ; 34(5): e2107150, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34897858

RESUMO

Ferritin (Fn) is considered a promising carrier for targeted delivery to tumors, but the successful application in vivo has not been fully achieved yet. Herein, strong evidence is provided that the Fn receptor is expressed in liver tissues, resulting in an intercept effect in regards to tumor delivery. Building on these observations, a biomineralization technology is rationally designed to shield Fn using a calcium phosphate (CaP) shell, which can improve the delivery performance by reducing Fn interception in the liver while re-exposing it in acidic tumors. Moreover, the selective dissolution of the CaP shell not only neutralizes the acidic microenvironment but also induces the intratumoral immunomodulation and calcification. Upon multiple cell line and patient-derived xenografts, it is demonstrated that the elaboration of the highly flexible Fn@CaP chassis by loading a chemotherapeutic drug into the Fn cavity confers potent antitumor effects, and additionally encapsulating a photosensitizer into the outer shell enables a combined chemo-photothermal therapy for complete suppression of advanced tumors. Altogether, these results support Fn@CaP as a new nanoplatform for efficient modulation of the tumor microenvironment and targeted delivery of diverse therapeutic agents.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Ferritinas , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes , Fototerapia , Microambiente Tumoral
11.
Nat Commun ; 12(1): 6399, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737274

RESUMO

Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo.


Assuntos
Cálcio/metabolismo , Estruturas Metalorgânicas/farmacologia , Mitocôndrias/metabolismo , Células HeLa , Humanos , Radical Hidroxila/metabolismo , Raios Infravermelhos , Estruturas Metalorgânicas/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação
12.
Cell Death Discov ; 7(1): 274, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608122

RESUMO

Tryptophan metabolism is an essential regulator of tumor immune evasion. However, the effect of tryptophan metabolism on cancer cells remains largely unknown. Here, we find that tumor cells have distinct responses to tryptophan deficiency in terms of cell growth, no matter hepatocellular carcinoma (HCC) cells, lung cancer cells, or breast cancer cells. Further study shows that ERRFI1 is upregulated in sensitive HCC cells, but not in resistant HCC cells, in response to tryptophan deficiency, and ERRFI1 expression level positively correlates with HCC patient overall survival. ERRFI1 knockdown recovers tryptophan deficiency-suppressed cell growth of sensitive HCC cells. In contrast, ERRFI1 overexpression sensitizes resistant HCC cells to tryptophan deficiency. Moreover, ERRFI1 induces apoptosis by binding PDCD2 in HCC cells, PDCD2 knockdown decreases the ERRFI1-induced apoptosis in HCC cells. Thus, we conclude that ERRFI1-induced apoptosis increases the sensitivity of HCC cells to tryptophan deficiency and ERRFI1 interacts with PDCD2 to induce apoptosis in HCC cells.

13.
World J Gastroenterol ; 27(33): 5555-5565, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34588751

RESUMO

A significant breakthrough in the field of obesity research was the demonstration that an obese phenotype could be manipulated by modulating the gut microbiota. An important next step is to elucidate a human-relevant "map'' of microbiota-host interactions that regulate the metabolic health of the host. An improved understanding of this crosstalk is a prerequisite for optimizing therapeutic strategies to combat obesity. Intestinal mucosal barrier dysfunction is an important contributor to metabolic diseases and has also been found to be involved in a variety of other chronic inflammatory conditions, including cancer, neurodegeneration, and aging. The mechanistic basis for intestinal barrier dysfunction accompanying metabolic disorders remains poorly understood. Understanding the molecular and cellular modulators of intestinal barrier function will help devise improved strategies to counteract the detrimental systemic consequences of gut barrier breakage. Changes in the composition and function of the gut microbiota, i.e., dysbiosis, are thought to drive obesity-related pathogenesis and may be one of the most important drivers of mucosal barrier dysfunction. Many effects of the microbiota on the host are mediated by microbiota-derived metabolites. In this review, we focus on several relatively well-studied microbial metabolites that can influence intestinal mucosal homeostasis and discuss how they might affect metabolic diseases. The design and use of microbes and their metabolites that are locally active in the gut without systemic side effects are promising novel and safe therapeutic modalities for metabolic diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Disbiose , Humanos , Mucosa Intestinal , Obesidade
14.
Chemosphere ; 277: 130345, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34384187

RESUMO

Saline-sodic soils cover ∼10% of the global land surface and deliver various ecosystem services to human society in the arid/semiarid regions. Flue gas desulfurization gypsum (FGDG), a byproduct from coal-fired power plants, is widely used to ameliorate saline-sodic soils. Here, we aimed to quantify the impacts of FGDG application on multiple soil functions across climatic conditions, management practices, and soil types, and to explore how FGDG application affects plant productivity. We conducted a meta-analysis by compiling 2658 pairs of data points with and without FGDG application from 59 locations across China. We found that FGDG application significantly increased crop yield by 91.2% ± 22.5% (mean ± 95% CI) regardless of local climate and soil type, and improved soil quality by reducing soil exchangeable sodium percentage (ESP) by 37.4% ± 9.6% and pH by 8.1% ± 1.7%. Increases in soil productivity were strongly correlated with decreases in soil ESP and pH, suggesting that increases in soil productivity were due to alleviated stress for plant growth. Meanwhile, some heavy elements (e.g., Hg and Ni) increased after FGDG application, likely imposing threats to soil health. Overall, the FGDG application is effective in improving the quality and productivity of saline-sodic soils across China. Our findings suggest that simultaneous assessment of changes in soil water (e.g., water holding capacity and infiltration), nutrient transformation, soil organic matter dynamics, and microbial communities helps disentangle mechanisms that are responsible for optimizing ecosystem service provided by saline-sodic soils after FGDG amendment application.


Assuntos
Mercúrio , Solo , Sulfato de Cálcio , Ecossistema , Gases , Humanos
15.
Cancer Lett ; 519: 150-160, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34265397

RESUMO

Calcium channel TRPV6 upregulation is associated with poor prognosis of breast cancer by promoting invasion and metastasis, and TRPV6 is a potential target for breast cancer therapy. However, the mechanism by which TRPV6 promotes breast metastasis remains unclear. Here, we report that TRPV6 expression is upregulated in metastatic breast cancers and that TRPV6 overexpression or upregulation accelerates primary breast cancer cell migration. In contrast, TRPV6 suppression decreases cell migration. Mechanistically, TRPV6 activates NFATC2 by increasing NFATC2IP phosphorylation at Ser204, and CDK5 is a candidate kinase that may perform this phosphorylation. Consequently, activated NFATC2 increases breast cancer metastasis by upregulating ADAMTS6 expression. These observations suggest that TRPV6 increases NFATC2 transcriptional activity by increasing NFATC2IP phosphorylation, which consequently upregulates ADAMTS6 expression to promote breast cancer metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Canais de Cátion TRPV/metabolismo , Proteínas ADAMTS/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quinase 5 Dependente de Ciclina/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Fosforilação/fisiologia , Regulação para Cima/fisiologia
16.
Cell Death Discov ; 7(1): 173, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230478

RESUMO

Sorafenib is the FDA-approved first-line target drug for HCC patients. However, sorafenib only confers 3-5 months of survival benefit with <30% of HCC patients. Thus, it is necessary to develop a sensitizer for hepatocellular carcinoma (HCC) to sorafenib. Here, we report that in representative HCC cell lines (SMMC-7721 and PLC8024) that are insensitive to sorafenib, 3-HAA (50 µM) significantly enhances cell sensitivity to sorafenib to an extent that could not be explained by additive effects. In nude mice carrying HCC xenograft, tumor growth is inhibited by sorafenib (10 mg/kg/day) or 3-HAA (100 mg/kg/day) alone. When used in combination, the treatment effectively prevents the xenograft from growing. In a set of mechanistic experiments, we find enhanced AKT activation and increased proportion of CD44+CD133+ cells in sorafenib-resistant HCC cells and tissues. The proportion of CD44+CD133+ cells is reduced upon 3-HAA treatment in both cultured cells and mouse xenografts, suggesting that 3-HAA could decrease the stemness of HCC. We also detect decreased phosphorylation of AKT, a regulator of the GSK3ß/ß-catenin signaling upon 3-HAA treatment. The AKT activator SC79 activates GSK3 ß/ß-catenin signaling while the Wnt inhibitor XAV-939 abolishes 3-HAA inhibition of HCC growth in vitro and in mice. The current study demonstrates that 3-HAA sensitizes HCC cells to sorafenib by reducing tumor stemness, suggesting it is a promising molecule for HCC therapy.

17.
Adv Sci (Weinh) ; 8(10): 2002787, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026432

RESUMO

As membrane-bound extracellular vesicles, exosomes have targeting ability for specific cell types, and the cellular environment strongly impacts their content and uptake efficiency. Inspired by these natural properties, the impacts of various cellular stress conditions on the uptake efficiency of tumor iterated exosomes are evaluated, and low-pH treatment caused increased uptake efficiency and retained cell-type specificity is found. Lipidomics analyses and molecular dynamics simulations reveal a glycerolipid self-aggregation-based mechanism for the enhanced homologous uptake. Furthermore, these low-pH reprogrammed exosomes are developed into a smart drug delivery platform, which is capable of specifically targeting tumor cells and selectively releasing diverse chemodrugs in response to the exosome rupture by the near-infrared irradiance-triggered burst of reactive oxygen species. This platform exerts safe and enhanced antitumor effects demonstrated by multiple model mice experiments. These results open a new avenue to reprogram exosomes for smart drug delivery and potentially personalized therapy against their homologous tumor.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Exossomos/química , Concentração de Íons de Hidrogênio , Fármacos Fotossensibilizantes/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Immunol ; 206(10): 2376-2385, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33893171

RESUMO

NLRP3 inflammasome plays an important role in innate immune system through recognizing pathogenic microorganisms and danger-associated molecules. Deubiquitination of NLRP3 has been shown to be essential for its activation, yet the functions of Ubc13, the K63-linked specific ubiquitin-conjugating enzyme E2, in NLRP3 inflammasome activation are not known. In this study, we found that in mouse macrophages, Ubc13 knockdown or knockout dramatically impaired NLRP3 inflammasome activation. Catalytic activity is required for Ubc13 to control NLRP3 activation, and Ubc13 pharmacological inhibitor significantly attenuates NLRP3 inflammasome activation. Mechanistically, Ubc13 associates with NLRP3 and promotes its K63-linked polyubiquitination. Through mass spectrum and biochemical analysis, we identified lysine 565 and lysine 687 as theK63-linked polyubiquitination sites of NLRP3. Collectively, our data suggest that Ubc13 potentiates NLRP3 inflammasome activation via promoting site-specific K63-linked ubiquitination of NLRP3. Our study sheds light on mechanisms of NLRP3 inflammasome activation and identifies that targeting Ubc13 could be an effective therapeutic strategy for treating aberrant NLRP3 inflammasome activation-induced pathogenesis.


Assuntos
Inflamassomos/metabolismo , Lisina/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Poliubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/deficiência , Ubiquitinação/genética , Animais , Células HEK293 , Humanos , Inflamassomos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ligação Proteica , Transfecção , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação/efeitos dos fármacos
19.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771861

RESUMO

To address long-standing issues with tumor penetration and targeting among cancer therapeutics, we developed an anticancer platelet-based biomimetic formulation (N+R@PLTs), integrating photothermal nanoparticles (N) and immunostimulator (R) into platelets (PLTs). Exploiting the aggregative properties of platelets and high photothermal capacity, N+R@PLTs functioned as an arsenal by targeting defective tumor vascular endothelial cells, accumulating in a positive feedback aggregation cascade at sites of acute vascular damage induced by N-generated local hyperthermia, and subsequently secreting nanosized proplatelets (nPLTs) to transport active components to deep tumor tissue. The immunostimulator augmented the immunogenicity of antigens released from ablated tumors, inducing a stronger immunological response to attack residual, metastatic, and recurrent tumors. Following activation by low-power near-infrared light irradiation, the photothermal and immunological components synergistically provide exceptionally high therapeutic efficacy across nine murine models that mimicked a range of clinical requirements, and, most notably, a sophisticated model based on humanized mouse and patient-derived tumor xenograft.

20.
Cell Death Dis ; 12(1): 94, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462208

RESUMO

Circular RNAs (circRNAs) is one type of important non-coding RNAs that participate in tumorigenesis and cancer progression. In our previous study, we performed a microarray analysis of circRNAs between the tumor tissues and the adjacent normal tissues of hepatocellular carcinoma (HCC) patients, and found that the circRNA hsa_circ_0007456 is significantly downregulated in the tumor tissues and correlated with the prognosis of HCC. We further investigated the relationship between the expression levels of hsa_circ_0007456 in HCC and the susceptibility of NK cells, and found that the expression levels of hsa_circ_0007456 in HCC cell lines significantly influenced their susceptibility to NK cells. Through a series of screening and validation, we found that hsa_circ_0007456 mainly functioned through sponging miR-6852-3p and regulating the expression of intercellular adhesion molecule-1 (ICAM-1) in HCC. The miR-6852-3p/ICAM-1 axis is essential for the NK cytotoxicity toward HCC mediated by hsa_circ_0007456. In conclusion, we identify here hsa_circ_0007456 as a promising biomarker of HCC, and highlight hsa_circ_0007456/miR-6852-3p/ICAM-1 axis as an important signaling pathway in the process of tumor immune evasion and the tumorigenesis of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , RNA Circular , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA